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Laurent Polynomials

Let q = pa where p is a prime and a is a positive integer. Let Fq
denote the field of q elements.
For a Laurent polynomial f ∈ Fq[x±1

1 , . . . , x±1
n ] we may

represent f as:

f =
J∑

j=1

ajxVj ,aj 6= 0,

where each exponent Vj = (v1j , . . . , vnj) is a lattice point in Zn

and the power xVj is the product xv1j
1 · . . . · x

vnj
n .

Example

f (x1, x2) = 2
x1

+ 10x1x2
2 + 82

lattice points = {(−1,0) , (1,2) , (0,0)}
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Fp(∆)

Let ∆(f ) denote Newton polyhedron of f , that is, the convex
closure of the origin and {V1, . . . ,VJ}, the integral exponents of
f .

Definition
Given a convex integral polytope ∆ which contains the origin,
let Fq(∆) be the space of functions generated by the
monomials in ∆ with coefficients in the algebraic closure of Fq,
a field of q elements.

In other words,

Fq(∆) = {f ∈ Fq[x±1
1 , . . . , x±1

n ] | ∆(f ) ⊆ ∆}.
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The polytope ∆

Example

◦

•

•

•

Let ∆ be the polytope
generated by
f (x , y , z) = 1/z + x5z + y5z.
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The polytope ∆

Example

◦

•

•

•

•

•

•

•

(0,0,0)

(−1,0,0)

(1,0,5)

(1,1,4)

(1,2,3)

(1,3,2)

(1,4,1)

(1,5,0)

It is also the convex closure
of the lattice points (including
interior points).

Phong Le | Newton Polygons of L-Functions 4/33



∆ L Newton Polygon of f HP(∆) Ordinarity Decomposition Theorems Chain Level Calculations

The polytope ∆

Example

◦

•

•

•

•

•

•

•

c

x−1
0

x0x5
2

x0x1x4
2

x0x2
1 x3

2

x0x3
1 x2

2

x0x4
1 x2

x0x5
1

We can correspond each
lattice point to a monomial in
n variables (including interior
points).
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The polytope ∆

Example

◦

•

•

•

•

•

•

•

c

x−1
0

x0x5
2

x0x1x4
2

x0x2
1 x3

2

x0x3
1 x2

2

x0x4
1 x2

x0x5
1

Fp(∆) is space of functions
the generated by these
monomials (including interior
points).
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Facial Restriction

Let δ be a face of ∆ of arbitrary dimension. Define fδ to be the
restriction of f to the terms with exponent in δ:

fδ =
∑
Vj∈δ

ajxVj .

Example (f = xy4 + x4y )

There are three faces of ∆ away from the
origin.
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Facial Restriction

Let δ be a face of ∆ of arbitrary dimension. Define fδ to be the
restriction of f to the terms with exponent in δ:

fδ =
∑
Vj∈δ

ajxVj .

Example (f = xy4 + x4y )

There is one face δ1 of codimension 1.
fδ1 = f = xy4 + x4y .
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Facial Restriction

Let δ be a face of ∆ of arbitrary dimension. Define fδ to be the
restriction of f to the terms with exponent in δ:

fδ =
∑
Vj∈δ

ajxVj .

Example (f = xy4 + x4y )

•

There are two faces of codimension 2.
One is face δ2 which consists of the point
(1,4). Hence fδ2 = xy4
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Facial Restriction

Let δ be a face of ∆ of arbitrary dimension. Define fδ to be the
restriction of f to the terms with exponent in δ:

fδ =
∑
Vj∈δ

ajxVj .

Example (f = xy4 + x4y )

•

Similarly the other face δ3 consists of
(4,1). Hence fδ3 = x4y .

Phong Le | Newton Polygons of L-Functions 5/33



∆ L Newton Polygon of f HP(∆) Ordinarity Decomposition Theorems Chain Level Calculations

Mq(∆)

Definition
The Laurent polynomial f is called non-degenerate if for each
closed face δ of ∆(f ) of arbitrary dimension which does not
contain the origin, the n partial derivatives

{ ∂fδ
∂x1

, . . . ,
∂fδ
∂xn
}

have no common zeros with x1 · · · xn 6= 0 over the algebraic
closure of Fq.

Definition
Let Mq(∆) be the functions in Fq(∆) that are non-degenerate.
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Definition of the L-function

Let f ∈ Fq[x±1
1 , . . . , x±1

n ]. Let ζp be a p-th root of unity and
q = pa. For each positive integer k , consider the exponential
sum:

S∗k (f ) =
∑

(x1,...,xn)∈F∗
qk

ζ
Trk f (x1,...,xn)
p .

The behavior of S∗k (f ) as k increases is difficult to understand.
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To better understand S∗k (f ) we define the L-function as follows:

Fq, Fq2 , . . . Fqk , . . .

S∗1(f ), S∗2(f ), . . . S∗k (f ), . . .

S∗1(f )T + S∗2(f )T 2

2 + . . .+ S∗k (f )T k

k + . . .

L∗(f ,T ) = exp

( ∞∑
k=1

S∗k (f )
T k

k

)
.

By a theorem of Dwork-Bombieri-Grothendieck L(f ,T ) is a
rational function.
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NP(f )

Adolphson and Sperber showed that if f is non-degenerate

L∗(f ,T )(−1)n−1
=
∞∑

i=0

Ai(f )T i , Ai(f ) ∈ Z[ζp]

is a polynomial of degree n!Vol(∆).

Definition
Define the Newton polygon of f , denoted NP(f ) to be the lower
convex closure in R2 of the points

(k , ordqAk (f )), k = 0,1, . . . ,n!Vol(∆).
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Example

• •

◦

•

For p = q = 3 and
f = 1

x1
+ x1x2

2 + x1x2
3 .

One can computed directly:
L(f ,T )−1 =

−27T 4 + 0T 3 + 18T 2 + 8T + 1
↓

(4,3) (3,∞) (2,2) (1,0) (0,0)
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The Hodge Polygon

There exists a combinatorial lower bound to the Newton
polygon called the Hodge polygon HP(∆). This is constructed
using the cone generated by ∆ consisting of all rays passing
through nonzero points of ∆ emanating from the origin.
This is denoted C(∆).

Example

•

Phong Le | Newton Polygons of L-Functions 11/33



∆ L Newton Polygon of f HP(∆) Ordinarity Decomposition Theorems Chain Level Calculations

Hodge Polygon (continued)

For a vector u in Rn, w(u) is defined to be the smallest positive
real number c such that u ∈ c∆. If no such c exists, that is,
u /∈ C(∆), we define w(u) =∞.
Let D = D(∆). For an integer k , let

W∆(k) = card{u ∈ Zn|w(u) =
k
D
}.

This is the number of lattice points in Zn with weight k/D.
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Hodge Polygon (continued)

Let

H∆(k) =
n∑

i=0

(−1)i
(

n
i

)
W∆(k − iD).

H∆(k) is a non-negative integer for each k ≥ 0. Furthermore,

H∆(k) = 0, for k > nD

and
nD∑

k=0

H∆(k) = n!Vol(∆).
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Hodge Polygon (continued)

The Hodge polygon HP(∆) of ∆ is defined to be the lower
convex polygon in R2 with vertices(

m∑
k=0

H∆(k),
1
D

m∑
k=0

kH∆(k)

)
.

That is, the polygon HP(∆) is the polygon starting from the
origin with a side of slope k/D with horizontal length H∆(k) for
each integer 0 ≤ k ≤ nD.
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Hodge Polygon (continued)

Example

w
(u) =

1

w
(u) =

2

w
(u) =

3

w
(u) =

4
For the polytope generated
by (0,0), (1,0) and (0,1) we
have D = 1.
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Hodge Polygon (continued)

Example

w
(u) =

1

w
(u) =

2

w
(u) =

3

w
(u) =

4

From the diagram we see
the first few W∆(k) are:
W∆(0) = 1
W∆(1) = 2
W∆(2) = 3
W∆(3) = 4
W∆(4) = 5.
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Hodge Polygon (continued)

Example

w
(u) =

1

w
(u) =

2

w
(u) =

3

w
(u) =

4

From this we get:
HP∆(0) = 1
HP∆(1) = 0
HP∆(2) = 0.
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Hodge Polygon (continued)

Example

w
(u) =

1

w
(u) =

2

w
(u) =

3

w
(u) =

4

Hence HP(∆) is simply the
horizontal line joining the
origin and (1,0). This makes
sense since n!Vol(∆) = 1.
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Main Question

Definition
When NP(f ) = HP(∆) we say f is ordinary.

Definition
Let GNP(∆,p) = inff∈Mp(∆) NP(f ).

We know that GNP(∆,p) ≥ HP(∆) for every p.
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Generic Ordinarity

Main Question
When is GNP(∆,p) = HP(∆)?

If GNP(∆,p) = HP(∆) we say ∆ is generically ordinary at p.

Conjecture

Adolphson and Sperber conjectured that if p ≡ 1 (mod D(∆)) the
Mp(∆) is generically ordinary.

Wan showed that this is not quite true, but if we replace D(∆) with an
effectively computable D∗(∆) this is true.

Phong Le | Newton Polygons of L-Functions 17/33



∆ L Newton Polygon of f HP(∆) Ordinarity Decomposition Theorems Chain Level Calculations

Big Example

• •

• Recall for p = q = 3 and
f = 1

x1
+ x1x2

2 + x1x2
3 , the Newton

polygon of L(f ,T )(−1)(n−1)
=

−27T 4 + 18T 2 + 8T + 1. the
Newton polygon is:
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Big Example

∆(f ) is the polytope spanned by
the origin, (-1,0,0), (1,2,0) and
(1,0,2).
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Big Example

k 0 1 2 3
W∆(k) 1 6 15 28
H∆(k) 1 3 0 0
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Big Example

• •

•

m 0 1 2 3∑m
k=0 H∆(k) 1 1 4 4

1
D
∑m

k=0 kH∆(k) 0 0 3 3
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Big Example

• •

•

From this we see that the Newton
Polygon is equal to the Hodge
polygon. Hence f is ordinary.
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Facial Decomposition

Let {σ1, . . . , σh} be the set of faces of ∆ that do not contain the
origin.

Theorem (Facial Decomposition Theorem)

Let f be non-degenerate and let ∆(f ) be n-dimensional. Then f
is ordinary if and only if each fσi is ordinary. Equivalently, f is
non-ordinary if and only if if some fσi is non-ordinary.

Using the facial decomposition theorem we may assume that
∆(f ) is generated by a single codimension 1 face not
containing the origin.
This allows us to concentrate on methods to decompose the
individual faces of ∆.
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Coherent Decomposition

Let δ be a face of ∆ not containing the origin.

Definition
A coherent decomposition of δ is a decomposition T into polytopes
δ1, . . . , δh such that there is a piecewise linear function φ : δ 7→ R
such that

1 φ is concave i.e. φ(tx + (1− t)x ′) ≥ tφ(x) + (1− t)φ(x ′), for
all x , x ′ ∈ δ, 0 ≤ t ≤ 1.

2 The domains of linearity of φ are precisely the n-dimensional
simplices δi for 1 ≤ i ≤ m.

Coherent decompositions are sometimes called concave
decompositions.
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Coherent Decomposition Theorem

Let ∆ be a polytope containing a unique face δ away from the
origin. Let δ = ∪δi be a complete coherent decomposition of δ.
Let ∆i denoted the convex closure of δi and the origin. Then
∆ = ∪∆i . We call this a coherent decomposition of ∆.

Theorem (Coherent Decomposition (L-))
Suppose each lattice point of δ is a vertex of δi for some i. If
each f∆i is generically non-degenerate and ordinary for some
prime p, then f is also generically non-degenerate and ordinary
for the same prime p.
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Example

◦

•

••

•

(0,0,0)

(1,0,0)

(−1,0,0)

(1,0,5)

(1,5,0)

There are two faces away
from the origin. Using the
facial decomposition theorem
we can divide this into two
polytopes.
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Example

◦

•

•

•

(0,0,0)

(−1,0,0)

(1,0,5)

(1,5,0)

Consider the polytope ∆′

with vertices
(0,0,0), (−1,0,0), (1,5,0)
and (1,0,5). Wan’s work has
shown that the back face is
ordinary for any prime so we
can ignore it.
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Example

◦

•

•

•

•

•

•

•

(0,0,0)

(−1,0,0)

(1,0,5)

(1,1,4)

(1,2,3)

(1,3,2)

(1,4,1)

(1,5,0)

We can decompose the front
face, which will decompose
the entire polytope
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Example

◦

•

•

•

•

•

•

•

(0,0,0)

(−1,0,0)

(1,0,5)

(1,1,4)

(1,2,3)

(1,3,2)

(1,4,1)

(1,5,0)

For any f ∈ Mp(∆′) if f is
ordinary when restricted to
each of these pieces, it is
ordinary on all of f .
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Example

◦

•

•

•

•

•

•

•

(0,0,0)

(−1,0,0)

(1,0,5)

(1,1,4)

(1,2,3)

(1,3,2)

(1,4,1)

(1,5,0)

One can show that
D(∆′) = 5 and ∆′ is
generically ordinary when
p ≡ 1 (mod 5), that is,
Adolphson and Sperber’s
conjecture holds in this case.
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Reducing L(f , t)

Using the Dwork trace formula one can reformulate L(f ,T ):

L(f ,T )(−1)(n−1)
=

n∏
i=0

det(I − TqiAa(f ))(−1)n−1

where Aa(f ) is an infinite Frobenius matrix.
Hence our understanding of L(f ,T ) can be reduced to
understanding Aa(f ).
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A1(f )

If we are just concerned with ordinarity and not L(f ,T ) or the
actual Newton polygon, we can focus on a much simpler
function:

det(I − TA1(f ))

where
Aa(f ) = A1Aτ

1

1 . . .Aτ
a−1

1

where τ is a lift of x 7→ xp from Gal(Fq/Fp) to a generator of
Gal(K/Qp) for K is a degree a unramified extension of Qp.
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Definition of A1(f )

Let π ∈ Fp satisfy
∑∞

m=0
πpm

pm = 0 with ordπ = 1
p−1 .Let

Fr (f ) =
∑

u

 J∏
j=1

λuj a
uj
j

πu1+...+uJ ,

where the outer sum is over all solutions of the linear system

J∑
j=1

ujVj = r ,uj ≥ 0,uj integral.

For the purposes of Newton polygons we are mostly concerned
with the πu1+...+uJ part.
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Definition of A1(f ) (continued)

A1(f ) is the infinite matrix whose rows are indexed by r and
columns are indexed by s, lattice points in the closed cone
C(∆):

A1(f ) = (ar ,s(f )) = (Fps−r (f )πw(r)−w(s)).

One can also derive the lower bound:

ordar ,s(f ) ≥ w(ps − r) + w(r)− w(s)

p − 1
≥ w(s).
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Block form of A1(f )

Let ξ be such that ξD = πp−1. Hence ordξ = 1/D. By ordering r
and s in terms of weights we can write

A1(f ) =


A00 ξ1A01 . . . ξiA0i . . .

A10 ξ1A11 . . . ξiA1i . . .
...

...
. . .

...
Ai0 ξ1Ai1 . . . ξiAii . . .
...

...
. . .

...

 ,

where the block Aij is a finite matrix with W∆(i) rows and W∆(j)
columns.
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Chain Polytope

This block form of A1(f ) give us a very stable foothold in
understanding ordinarity.
The ξi terms are precisely the parts that show
NP(f ) ≥ HP(∆).

Using this one can construct an A1(f ) version of the Hodge
polygon:

Definition

Let P(∆) be the polygon in R2 with vertices (0,0) and(
m∑

k=0

W (Σ, k),
1

D(∆)

m∑
k=0

kW (Σ, k)

)
, m = 0,1,2, . . . .
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Chain Level

Theorem
The Newton polygon of det(I − TA1(f )) is equal to P(∆) if and
only if NP(f ) = HP(∆), that is, when f is ordinary.

This allows us to examine det(I − TA1(f )) rather than the
entire L-function. This is called working on the chain level.
The main advantage of working on the chain level is the
block representation of A1(f ).
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Cone Restriction of A1(f )

Block Form

A1(f ) = (ar ,s(f )) =


A00 ξ1A01 . . . ξiA0i . . .

A10 ξ1A11 . . . ξiA1i . . .
...

...
. . .

...
Ai0 ξ1Ai1 . . . ξiAii . . .
...

...
. . .

...


Let ∆1, . . . ,∆h be a coherent decomposition of ∆. Let
Σi = C(∆i), the cone generated by ∆i .
For a cone Σ, Let A1(Σ, f ) be the ”Σ" piece of (as,r (f )) in A1(f ),
that is, r and s run through the cone Σ rather than the entire
cone C(∆).
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Cone Restriction of P(∆)

Since we have a cone restricted A1(f ) we must also have a
cone restricted P(∆). Let

W (Σ, k) = #

{
r ∈ Zn ∩ Σ | w(r) =

k
D(∆)

}
.

Definition

Let P(Σ) be the polygon in R2 with vertices (0,0) and(
m∑

k=0

W (Σ, k),
1

D(∆)

m∑
k=0

kW (Σ, k)

)
, m = 0,1,2, . . . .
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Outline of Proof

The idea is to show that if ∆i is a member of a coherent
decomposition the entries in A1(f ) with the highest order
occur precisely when r and s are from the same cone
C(∆i).
Therefore these bad terms will also appear in A1(Σi , f ) and
we can compare it to P(Σi) to determine ordinarity.
One can show that considering A1(Σi , f ) is equivalent to
considering A1(Σ, f∆i ) for the purposes of ordinarity.
Therefore if we assume each f∆i is generically ordinary for
all i , then the Newton polygon of det(I − TA1(Σi , f )) will
coincide with P(Σi) for all i . Then f itself will be chain level
generically ordinary, which is equivalent to regular generic
ordinary.
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The End

◦

•

•

•

•

•

•

•

Thank You!
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