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Laurent Polynomials

Let g = p? where pis a prime and a is a positive integer. Let Fy
denote the field of g elements.

For a Laurent polynomial f € Fq[x{', ..., x7'] we may
represent f as:

J
f=> ax",a+#0,

j=1
where each exponent V; = (vy;, ..., vy) is a lattice point in Z"
and the power x is the product x,” - ... x,;".

f(x1, %) = 2 + 10xx3 + 82

X-
lattice points = {(—11,0) , (1,2) , (0,0)}
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Fp(A)

Let A(f) denote Newton polyhedron of f, that is, the convex
closure of the origin and { V4, ..., V,}, the integral exponents of
f.

Definition

Given a convex integral polytope A which contains the origin,
let Fg(A) be the space of functions generated by the
monomials in A with coefficients in the algebraic closure of g,
a field of g elements.

In other words,

Fq(A) = {f € F[x{', ..., xE"] | A(f) C A}
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The polytope A

Let A be the polytope
generated by
f(x,y,2)=1/z+x°z+ y°z.
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The polytope A

(1,0,5)

It is also the convex closure
of the lattice points (including
interior points).

(1,4,1)

(1,5,0)
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The polytope A

XoX5

We can correspond each
lattice point to a monomial in
n variables (including interior
points).

Xox?
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The polytope A

XoX5

Fp(A) is space of functions
the generated by these
monomials (including interior
points).

Xox?
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Facial Restriction

Let 6 be a face of A of arbitrary dimension. Define f5 to be the
restriction of f to the terms with exponent in ¢:

fs = Z an‘//.

Vies

Example (f = xy* + x*y)

There are three faces of A away from the
origin.
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Facial Restriction

Let 6 be a face of A of arbitrary dimension. Define f5 to be the
restriction of f to the terms with exponent in ¢:

fs = Z an‘//.

Vies

Example (f = xy* + x*y)

There is one face 4 of codimension 1.
fs, = f = xy* + x*y.
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Facial Restriction

Let 6 be a face of A of arbitrary dimension. Define f5 to be the
restriction of f to the terms with exponent in ¢:

fs = Z an‘//.

Vies

Example (f = xy* + x*y)

There are two faces of codimension 2.
One is face d, which consists of the point
(1,4). Hence f;, = xy*
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Facial Restriction

Let 6 be a face of A of arbitrary dimension. Define f5 to be the
restriction of f to the terms with exponent in ¢:

fs = Z an‘//.

Vies

Example (f = xy* + x*y)

Similarly the other face d3 consists of
(4,1). Hence f5, = x*y.
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Mq(A)

Definition
The Laurent polynomial f is called non-degenerate if for each

closed face § of A(f) of arbitrary dimension which does not
contain the origin, the n partial derivatives

o o
oxy' T Oxp

have no common zeros with xi - - - X, % 0 over the algebraic
closure of [Fg.

Definition

Let My(A) be the functions in Fq(A) that are non-degenerate.
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Definition of the L-function

Let f € Fg[x;', ..., xi']. Let ¢p be a p-th root of unity and
g = p@. For each positive integer k, consider the exponential

sum:
S;:(f) _ Z C;’rkf(xh‘..,x,,)‘

(x1 7--~7Xn)E]F:;k

The behavior of S(f) as k increases is difficult to understand.
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To better understand Sj(f) we define the L-function as follows:

]Fq, ]FqZ, Fqk,
Sih. S, S,
SiHT+ Si(HhT+ ...+ Sif) e+

L*(f, T) = exp (Z Tk) :

By a theorem of Dwork-Bombieri-Grothendieck L(f, T) is a
rational function.
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NP(f)

Adolphson and Sperber showed that if f is non-degenerate

L (f, YD = ZA i(F) € Z[¢]

is a polynomial of degree n!Vol(A).

Definition

Define the Newton polygon of f, denoted NP(f) to be the lower
convex closure in R? of the points

(k,ordgA(f)), k = 0,1, ... nVoI(A).
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For p=qg =3 and

f= ;—1 + X1 X2 + X1 X5.

One can computed directly:
L(f, T) ' =

—2pyE 4= 7Y 4 18rE &+ B £+ 1

!
(4,3) (3,00) (2,2) (1,0) (0,0)
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The Hodge Polygon

There exists a combinatorial lower bound to the Newton
polygon called the Hodge polygon HP(A). This is constructed
using the cone generated by A consisting of all rays passing
through nonzero points of A emanating from the origin.

This is denoted C(A).

Example
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HP(A)

Hodge Polygon (continued)

For a vector v in R”, w(u) is defined to be the smallest positive
real number ¢ such that u € cA. If no such c exists, that is,
u¢ C(A), we define w(u) = oco.

Let D = D(A). For an integer k, let

Wa (k) = card{u € Z"|w(u) = g}.

This is the number of lattice points in Z" with weight k/D.
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HP(A)

Hodge Polygon (continued)

Let
Ha(k) = Z( 1) ( ) —iD).
Ha (k) is a non-negative integer for each k > 0. Furthermore,
Ha(k) =0, for k > nD

and

nD
> Ha(k) = nivol(A).
k=0
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HP(A)

Hodge Polygon (continued)

The Hodge polygon HP(A) of A is defined to be the lower
convex polygon in R? with vertices

(Z HMk)%ZkHMk)) -
k=0 k=0

That is, the polygon HP(A) is the polygon starting from the
origin with a side of slope k/D with horizontal length Ha (k) for
each integer 0 < k < nD.
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Hodge Polygon (continued)

Example

For the polytope generated
by (0,0),(1,0) and (0,1) we
have D = 1.
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Hodge Polygon (continued)

Example

From the diagram we see
the first few Wa (k) are:

Wa(0) =

Wa(1) =2
Wa(2) = 3
Wa(3) = 4
Wa(4) =5
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Hodge Polygon (continued)

Example

From this we get:

HPA(0) = 1
HPA(1) =0
HPA(2) = 0.
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Hodge Polygon (continued)

Example

Hence HP(A) is simply the
horizontal line joining the
origin and (1,0). This makes
sense since n'Vol(A) = 1.
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Ordinarity

Main Question

Definition
When NP(f) = HP(A) we say f is ordinary.

Definition
Let GNP(A, p) = infrep,(a) NP(f).

We know that GNP(A, p) > HP(A) for every p.
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Generic Ordinarity

Main Question
When is GNP(A, p) = HP(A)?

If GNP(A, p) = HP(A) we say A is generically ordinary at p.

Adolphson and Sperber conjectured that if p = 1 (mod D(A)) the
Mp(A) is generically ordinary.

Wan showed that this is not quite true, but if we replace D(A) with an
effectively computable D*(A) this is true.
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Ordinarity

Big Example

Recall for p =g =3 and

f= )j—1 + X1X2 + X1 X3, the Newton
polygon of L(f, T)=D"" =
—27T* +18T2 + 8T + 1. the
Newton polygon is:
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Ordinarity

Big Example

A(f) is the polytope spanned by
P the origin, (-1,0.0). (1.2.0) and
(1,0,2).

¥ e ---
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Ordinarity

Big Example

/D k |01 2 3
Wa(k) |1 6 15 28
A Ha(k) |1 3 0 0
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Ordinarity

Big Example

m 01 2 3
Z;T:oHA(k) 1 1 4 4
b kokHa(k) |0 0 3 3
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Ordinarity

Big Example

From this we see that the Newton
Polygon is equal to the Hodge
polygon. Hence f is ordinary.
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Facial Decomposition

Let {o1,...,0n} be the set of faces of A that do not contain the
origin.

Theorem (Facial Decomposition Theorem)

Let f be non-degenerate and let A(f) be n-dimensional. Then f
is ordinary if and only if each f,, is ordinary. Equivalently, f is
non-ordinary if and only if if some f,, is non-ordinary.

Using the facial decomposition theorem we may assume that
A(f) is generated by a single codimension 1 face not
containing the origin.

This allows us to concentrate on methods to decompose the
individual faces of A.
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Coherent Decomposition

Let 0 be a face of A not containing the origin.

Definition

A coherent decomposition of § is a decomposition T into polytopes
01, - ..,0p such that there is a piecewise linear function ¢ : § — R
such that

¢ is concave i.e. p(tx + (1 — £)x’) > top(x) + (1 — t)p(x'), for
all x, x’ €46,0<t<1.

The domains of linearity of ¢ are precisely the n-dimensional
simplices ¢; for 1 < i< m.

Coherent decompositions are sometimes called concave
decompositions.
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Coherent Decomposition Theorem

Let A be a polytope containing a unique face § away from the
origin. Let § = U¢; be a complete coherent decomposition of 4.
Let A, denoted the convex closure of §; and the origin. Then
A = UA,. We call this a coherent decomposition of A.

Theorem (Coherent Decomposition (L-))

Suppose each lattice point of 0 is a vertex of 6; for some i. If
each fu, is generically non-degenerate and ordinary for some
prime p, then f is also generically non-degenerate and ordinary
for the same prime p.
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(1,0,5)

There are two faces away
from the origin. Using the
facial decomposition theorem

(1,5.00 we can divide this into two
polytopes.

Soocooooooood
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(1,0,5)

Consider the polytope A’
with vertices
(0,0,0),(—1,0,0),(1,5,0)
and (1,0,5). Wan’s work has

(1.5.00 shown that the back face is
ordinary for any prime so we
can ignore it.

Soocooooooood
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(1,0,5)

Soocooooooood

We can decompose the front
face, which will decompose
the entire polytope
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(1,0,5)

Soocooooooood

Forany f € Mp(A') if fis
ordinary when restricted to
each of these pieces, it is
ordinary on all of f.
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(1,0,5)

One can show that
D(A’)=5and A’ is
generically ordinary when

p = 1(mod 5), that is,
Adolphson and Sperber’s
_____________ conjecture holds in this case.

Soocooooooood
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Chain Level Calculations

Reducing L(f, t)

Using the Dwork trace formula one can reformulate L(f, T):

L(f, T Hdet (I - Tq'Aa(f)) D"
i=0

where A(f) is an infinite Frobenius matrix.
Hence our understanding of L(f, T) can be reduced to
understanding Aa(f).
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Chain Level Calculations

If we are just concerned with ordinarity and not L(f, T) or the
actual Newton polygon, we can focus on a much simpler

function:
det(/ — TA+(f))

where 1 -
Aq(f) = AtA] .. AT

where 7 is a lift of x — xP from Gal(F4/Fp) to a generator of
Gal(K/Qp) for K is a degree a unramified extension of Q.
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Chain Level Calculations

Definition of A (f)

Let w € Fp satisfy 0o %5 = 0 with ordr = 15 Let

J

F(f)=> | [[rua’ | 7,

u o\ j=t
where the outer sum is over all solutions of the linear system

J
Z u;V; = r,u; > 0, uj integral.
j=1
For the purposes of Newton polygons we are mostly concerned
with the 74+ part.
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Chain Level Calculations

Definition of A¢(f) (continued)

A1(f) is the infinite matrix whose rows are indexed by r and
columns are indexed by s, lattice points in the closed cone
C(A):

A1(F) = (ars(f) = (Fps—r(Hm ")),

One can also derive the lower bound:

orda, o(f) > w(ps —r)+ w(r) — w(s)
r,s - p—1

> w(s).
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Chain Level Calculations

Block form of A4(f)

Let ¢ be such that ¢ = 7P~1. Hence ord¢ = 1/D. By ordering r
and s in terms of weights we can write

A Aot ... EA

Ao A o A
A=+ i ,

Ao AL ... A

where the block A is a finite matrix with Wa (/) rows and Wa (/)
columns.
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Chaln Polytope

m This block form of A;(f) give us a very stable foothold in
understanding ordinarity.

m The ¢’ terms are precisely the parts that show
NP(f) > HP(A).
Using this one can construct an A (f) version of the Hodge
polygon:

Definition

Let P(A) be the polygon in R? with vertices (0,0) and

5

kZOW(Z,k), D(A)ZKW(Z k), m=0,1,2,....
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el Ll

The Newton polygon of det(/ — TA+(f)) is equal to P(A) if and
only if NP(f) = HP(A), that is, when f is ordinary.

m This allows us to examine det(/ — TA¢(f)) rather than the
entire L-function. This is called working on the chain level.

m The main advantage of working on the chain level is the
block representation of A¢(f).
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Cone Restrlctlon of Aq(f)

Block Form
A &'Aot ... EA
Ao A o A
Aqi(f) = (ars(f)) =
Ao A ... A

Let A4,..., A, be a coherent decomposition of A. Let

Y; = C(4)), the cone generated by A,.

For a cone X, Let A¢(X, f) be the "X" piece of (as ((f)) in A¢(f),
that is, r and s run through the cone X rather than the entire
cone C(A).
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Cone Restrlctlon of P(A)

Since we have a cone restricted A;(f) we must also have a
cone restricted P(A). Let

W(Z,k):#{reZ”ﬂZ | w(r) = D(kA)}

Definition

Let P(X) be the polygon in R? with vertices (0, 0) and

(ZW(Z,k), D(A)ZKW(Z k>, m=0,1,2,....

k=0
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Outline of Proof

m The idea is to show that if A; is a member of a coherent
decomposition the entries in A;(f) with the highest order
occur precisely when r and s are from the same cone
C(4A)).

m Therefore these bad terms will also appear in A{(X;, f) and
we can compare it to P(X;) to determine ordinarity.

m One can show that considering A¢(%;, f) is equivalent to
considering A1(X, fa,) for the purposes of ordinarity.

m Therefore if we assume each fx, is generically ordinary for
all i, then the Newton polygon of det(/ — TA;(%;, f)) will
coincide with P(X%;) for all i. Then f itself will be chain level
generically ordinary, which is equivalent to regular generic
ordinary.
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B )
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