Algebro-Geometric Trace Codes

Phong Le

Department of Mathematics Niagara University

January 2012/Joint Mathematics Meeting

Algebraic Curves over \mathbb{F}_{p^a}

p is a prime

- $q = p^a$, a power of p
- **\blacksquare** \mathbb{F}_q is the field of q elements
- **E** \mathbb{F}_{q^m} is the field extension of \mathbb{F}_q of degree *m*
- X is an projective curve of genus g over \mathbb{F}_{q^m}
- **•** $\mathbb{F}_{q^m}(X)$ is the function field of X over \mathbb{F}_{q^m}

Fix a divisor
$$G = \sum n_Q Q$$
, $Q \in X$, $n_Q \in \mathbb{Z} \setminus \{0\}$.

• deg(G) = $\sum n_Q$

Split *G* into positive and negative parts:

$$G^+ = \sum_{n_Q > 0} n_Q Q$$

$$G^- = \sum_{n_Q < 0} n_Q Q$$

$$G = G^+ + G^-$$

Divisor to Vector Space

For $f \in \mathbb{F}_{q^m}(X)$. We can generate a divisor by locating the zeros and poles of the function.

- The divisor of a function f is denoted (f).
- If Q ∈ X is a zero of f with multiplicity n_Q then n_QQ appears in (f).
- If P ∈ X is a pole of f with multiplicity n_P then −n_PP appears in (f).

Example

Let
$$X = \mathbb{P}^1$$
 the projective curve. Let $f(x) = x$.

$$(f)=\mathbf{0}-\infty.$$

Divisor to Vector Space

For $f \in \mathbb{F}_{q^m}(X)$. We can generate a divisor by locating the zeros and poles of the function.

- The divisor of a function f is denoted (f).
- If $Q \in X$ is a zero of f with multiplicity n_Q then $n_Q Q$ appears in (f).
- If P ∈ X is a pole of f with multiplicity n_P then −n_PP appears in (f).

Example

Let
$$X = \mathbb{P}^1$$
 the projective curve. Let $f(x) = x$.

$$(f)=0-\infty.$$

Algebraic Curves Codes Traces Dimension Equality Main Theorem Example
$$\mathcal{L}(G)$$

For a divisor *G* we can generate a vector space of functions:

$$\mathcal{L}(G):=\{f\in \mathbb{F}_{q^m}(X)\mid (f)+G\geq 0\}\cup\{0\}$$

- These are functions who have at least as many zeros as G and at worst as many poles as G.
- \blacksquare *G*⁺ bounds the multiplicity and location of the poles
- *G*[−] determine the required multiplicity and location of zeros
- This is a vector space, but not a terribly code friendly one.

Algebro-Geometric Codes

Let $D = \{P_1, \ldots, P_n\}$ be \mathbb{F}_{q^m} rational points of X away from G^+ . Usually we just take $D = X \setminus Supp(G^+)$.

$$C = C(D,G) := \{(f(P_1),\ldots,f(P_n)) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_{q^m}^n.$$

Theorem (Riemann-Roch)

 $lf 2g - 2 < \deg(G) < n$:

$$\dim_{\mathbb{F}_{q^m}}(\mathcal{L}(G)) = \deg(G) + 1 - g.$$

Furthermore, when deg(G) < n we know the dimension of *C* is the same as the dimension of $\mathcal{L}(G)$.

Algebro-Geometric Codes

Let $D = \{P_1, \ldots, P_n\}$ be \mathbb{F}_{q^m} rational points of X away from G^+ . Usually we just take $D = X \setminus Supp(G^+)$.

$$C = C(D,G) := \{(f(P_1),\ldots,f(P_n)) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_{q^m}^n.$$

Theorem (Riemann-Roch)

If $2g - 2 < \deg(G) < n$:

$$\dim_{\mathbb{F}_{q^m}}(\mathcal{L}(G)) = \deg(G) + 1 - g.$$

Furthermore, when deg(G) < n we know the dimension of *C* is the same as the dimension of $\mathcal{L}(G)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ

The Trace Map

Define the trace function to be $Tr : \mathbb{F}_{q^m} \mapsto \mathbb{F}_q$ where

$$Tr(x) = x + x^{q} + \ldots + x^{q^{m-2}} + x^{q^{m-1}}$$

This is necessarily an element of \mathbb{F}_q .

Example

Let *t* be a generator of \mathbb{F}_{7^3} where *t* satisfies the polynomial $x^3 + 6x^2 + 4$.

 $Tr(x) = x + x^{7} + x^{49}$ $Tr(t) = t + t^{7} + t^{49} = 1$ $Tr(2t+1) = (2t+1) + (2t+1)^{7} + (2t+1)^{49} = 5$

The Trace Map

Define the trace function to be $Tr : \mathbb{F}_{q^m} \mapsto \mathbb{F}_q$ where

$$Tr(x) = x + x^{q} + \ldots + x^{q^{m-2}} + x^{q^{m-1}}$$

This is necessarily an element of \mathbb{F}_q .

Example

Let *t* be a generator of \mathbb{F}_{7^3} where *t* satisfies the polynomial $x^3 + 6x^2 + 4$. $Tr(x) = x + x^7 + x^{49}$

$$Tr(t) = t + t^7 + t^{49} = 1$$
$$Tr(2t+1) = (2t+1) + (2t+1)^7 + (2t+1)^{49} = 5$$

AG Trace Code

$$C = C(D,G) := \{(f(P_1),\ldots,f(P_n)) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_{q6m}^n.$$

Let *TrC* denote the trace of *C*:

$$TrC := \{(Tr(f(P_1)), \ldots, Tr(f(P_n)) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_q^n$$

TrC is a vector space over \mathbb{F}_q .

Main Question

What is the dimension of *TrC*? Or, what sorts of constraints can we put on *TrC* so that we can find or bound the dimension?

AG Trace Code

$$C = C(D,G) := \{(f(P_1),\ldots,f(P_n)) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_{q6m}^n.$$

Let *TrC* denote the trace of *C*:

$$TrC := \{(Tr(f(P_1)), \ldots, Tr(f(P_n)) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_q^n$$

TrC is a vector space over \mathbb{F}_q .

Main Question

What is the dimension of TrC? Or, what sorts of constraints can we put on TrC so that we can find or bound the dimension?

Recap

- Curve X of genus g defined over Fp^a
- Divisor $G = \sum n_Q Q$ on X
- G splits into positive and negative coefficient parts G = G⁺ + G⁻
- Set of points $D = \{P_1, \ldots, P_n\}$ away from G^+
- $C(G,D) = \{(f(P_1),\ldots,f(P_n) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_{q^m}^n$
- $TrC = \{(Tr(f(P_1)), \ldots, Tr(f(P_n))) \mid f \in \mathcal{L}(G)\} \subseteq \mathbb{F}_q^n$

The Kernel K

Viewing *Tr* as a \mathbb{F}_a -linear map we can generate an exact sequence:

$$0 \rightarrow K \rightarrow C \rightarrow TrC \rightarrow 0$$

K consists of all elements who trace to zero.

$$\dim_{\mathbb{F}_a}(TrC) = m(\dim_{\mathbb{F}_{q^m}}(C) - \dim_{\mathbb{F}_{q^m}}(K))$$

Since Riemann-Roch gives us conditions for determining $\dim_{\mathbb{F}_{a^m}}(C)$ we may turn our focus on *K*.

Note

It is easier to think of K as a subspace of $\mathcal{L}(G)$ and not as a subspace of $\mathcal{C}(G, D)$ so that's what I'll do even though this is technically incorrect.

The Kernel K

Viewing *Tr* as a \mathbb{F}_a -linear map we can generate an exact sequence:

$$0 \to K \to C \to TrC \to 0$$

K consists of all elements who trace to zero.

$$\dim_{\mathbb{F}_a}(\mathit{Tr}\mathcal{C}) = \mathit{m}(\dim_{\mathbb{F}_{q^m}}(\mathcal{C}) - \dim_{\mathbb{F}_{q^m}}(\mathcal{K}))$$

Since Riemann-Roch gives us conditions for determining $\dim_{\mathbb{F}_{q^m}}(C)$ we may turn our focus on *K*.

Note

It is easier to think of *K* as a subspace of $\mathcal{L}(G)$ and not as a subspace of C(G, D) so that's what I'll do even though this is technically incorrect.

The First Ingredient

Theorem (Hilbert 90 for Traces)

For $\alpha \in \mathbb{F}_{q^m}$ we have $Tr(\alpha) = 0$ if and only if $\alpha = \beta^q - \beta$ for some $\beta \in \mathbb{F}_{q^m}$.

$E := \{ f = h^q - h \mid f \in \mathcal{L}(G), h \in \mathbb{F}_{q^m}(X) \} \subseteq K$

Question

What is the dimension of *E* and when is E = K?

コトメロトメヨトメヨト ヨークへの

Phong Le | AG Trace Codes

The First Ingredient

Theorem (Hilbert 90 for Traces)

For $\alpha \in \mathbb{F}_{q^m}$ we have $Tr(\alpha) = 0$ if and only if $\alpha = \beta^q - \beta$ for some $\beta \in \mathbb{F}_{q^m}$.

$$E := \{f = h^q - h \mid f \in \mathcal{L}(G), h \in \mathbb{F}_{q^m}(X)\} \subseteq K$$

Question

What is the dimension of *E* and when is E = K?

Phong Le | AG Trace Codes

The First Ingredient

Theorem (Hilbert 90 for Traces)

For $\alpha \in \mathbb{F}_{q^m}$ we have $Tr(\alpha) = 0$ if and only if $\alpha = \beta^q - \beta$ for some $\beta \in \mathbb{F}_{q^m}$.

$$E := \{f = h^q - h \mid f \in \mathcal{L}(G), h \in \mathbb{F}_{q^m}(X)\} \subseteq K$$

Question

What is the dimension of *E* and when is E = K?

The dimension of *E*

$$G = G^+ + G^-$$

- $[G/q] := \sum_{n_Q > 0} [n_Q/q] Q + \sum_{n_Q < 0} n_Q Q$
- [G/q] reduces the maximum number of poles a function is allowed to have.
- If $h \in \mathcal{L}([G/q])$ then $h^q h \in E \subseteq \mathcal{L}(G)$.
- When is $\mathcal{L}([G/q]) \xrightarrow{h^q h} \mathcal{L}(G)$ surjective?

One way to force surjectivity is to install further controls on the poles:

Proposition

When $\#Supp(G^{-}) \leq 1$,

$$\dim_{\mathbb{F}_q} E = \dim_{\mathbb{F}_q} \mathcal{L}[G/q] - \dim_{\mathbb{F}_q}(\mathbb{F}_q \cap \mathcal{L}[G/q]).$$

These dimensions are much more accessible via Riemann-Roch.

Side Question

Is there any other sort of restriction on G we can devise that will give us an easy formula for the dimension of E?

One way to force surjectivity is to install further controls on the poles:

Proposition

When $\#Supp(G^{-}) \leq 1$,

$$\dim_{\mathbb{F}_q} E = \dim_{\mathbb{F}_q} \mathcal{L}[G/q] - \dim_{\mathbb{F}_q}(\mathbb{F}_q \cap \mathcal{L}[G/q]).$$

These dimensions are much more accessible via Riemann-Roch.

Side Question

Is there any other sort of restriction on G we can devise that will give us an easy formula for the dimension of E?

The Second Ingredient

Theorem (Bombieri's estimate(1966))

Let X be a complete, geometrically irreducible, nosingular curve of genus g, defined over \mathbb{F}_{q^m} . Let $f \in \mathbb{F}_{q^m}(X), f \neq h^p - h$ for $h \in \overline{\mathbb{F}_p}(X)$, with pole divisor $(f)_{\infty}$ on X. Then

$$\left|\sum_{P\in X(\mathbb{F}_{q^m})\setminus (f)_{\infty}}\zeta_p^{\overline{tr}_{q^m/p}(f(P))}\right|\leq (2g-2+t+\deg(f)_{\infty})q^{m/2}$$

where $\zeta_p = \exp(2\pi i/p)$ is a primitive *p*-th root of unity and *t* is the number of distinct poles of *f* on *X*.

Note that on the LHS we take the full trace down to the prime field.

Key Lemma

If we choose an $f \in K \setminus E$ then the LHS must be maximized. This leads to the following lemma and proposition:

Lemma

Suppose $K \neq E$. Then there is an $f \in K \setminus E$ that is not of the form $h^p - h$ for h in $\overline{\mathbb{F}_p}(X)$.

Proposition

lf.

 $\#X(\mathbb{F}_{q^m}) > (2g - 2 + \deg(G^+))q^{m/2} + \#Supp(G^+)(q^{m/2} + 1)$ then K = E.

・ロット (雪) (日) (日) (日)

Key Lemma

If we choose an $f \in K \setminus E$ then the LHS must be maximized. This leads to the following lemma and proposition:

Lemma

Suppose $K \neq E$. Then there is an $f \in K \setminus E$ that is not of the form $h^p - h$ for h in $\overline{\mathbb{F}_p}(X)$.

Proposition

lf

$$\#X(\mathbb{F}_{q^m}) > (2g - 2 + \deg(G^+))q^{m/2} + \#Supp(G^+)(q^{m/2} + 1)$$

then $\mathcal{K} = \mathcal{E}.$

Main Theorem

Theorem (Wan, L-)

Let $2g - 2 \leq deg([G/q])$ and deg(G) < n. Assume the following:

$$\#Supp(G^{-}) \leq 1,$$

$$\#X(\mathbb{F}_{q^m}) > (2g-2 + \deg(G^+))q^{m/2} + Supp(G^+)(q^{m/2} + 1)$$

Under these conditions we have:

$$\dim_{\mathbb{F}_q}(\mathit{TrC}) = \mathit{m}(\deg(\mathit{G}) - \deg([\mathit{G}/q])) + \delta,$$

where

$$\delta = egin{cases} 1 & \textit{if} \# \textit{Supp}(G^-) = 0 \ 0 & \textit{otherwise}. \end{cases}$$

For a smooth projective curve *X* of genus *g* defined over \mathbb{F}_{q^m} , let $G = kP_{\infty}$ for $k \in \mathbb{Z}_{>0}$. By the Hasse-Weil bound we have

$$|\#X(\mathbb{F}_{q^m}) - (q^m + 1)| \le 2gq^{m/2}.$$

By the second condition we want

$$\#X(\mathbb{F}_{q^m}) > (2g-2+k)q^{m/2} + (q^{m/2}+1).$$

Combining these two inequalities, we see that the second condition is satisfied when

$$q^{m/2} - 4g + 1 > k$$
.

Example: Continued

We obtain the following:

Corollary

For X a smooth projective curve over \mathbb{F}_{q^m} and $G = kP_{\infty}$. if $2g - 2 \leq [k/q]$ and $k < \min(n, q^{m/2} - 4g + 1)$ then

$$\dim_{\mathbb{F}_q} Tr C = m(k - [k/q]) + 1.$$

- A generalization of work done by Marcel Van der Vlugt: *A New Upper Bound for the Dimension of Trace Codes.* Bull. London Math. Soc. 23 (1991), 395-400.
- Joint work with Daqing Wan
- preprint can be found on my website

Thank You!

http://math.uci.edu/~ple

Phong Le | AG Trace Codes

20/20